Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: implications for in vitro-in vivo extrapolation of clearance of prodrugs.
نویسندگان
چکیده
Hydrolysis plays an important role in metabolic activation of prodrugs. In the current study, species and in vitro system differences in hepatic and extrahepatic hydrolysis were investigated for 11 prodrugs. Ten prodrugs in the data set are predominantly hydrolyzed by carboxylesterases (CES), whereas olmesartan medoxomil is also metabolized by carboxymethylenebutenolidase (CMBL) and paraoxonase. Metabolic stabilities were assessed in cryopreserved hepatocytes, liver S9 (LS9), intestinal S9 (IS9), kidney S9 (KS9), and plasma from human, monkey, dog, and rat. Of all the preclinical species investigated, monkey intrinsic hydrolysis clearance obtained in hepatocytes (CLint,hepatocytes) were the most comparable to human hepatocyte data. Perindopril and candesartan cilexetil showed the lowest and highest CLint,hepatocytes, respectively, regardless of the species investigated. Scaled intrinsic hydrolysis clearance obtained in LS9 were generally higher than CLint,hepatocytes in all species investigated, with the exception of dog. In the case of human and dog intestinal S9, hydrolysis intrinsic clearance could not be obtained for CES1 substrates, but hydrolysis for CES2 and CMBL substrates was detected in IS9 and KS9 from all species. Pronounced species differences were observed in plasma; hydrolysis of CES substrates was only evident in rat. Predictability of human hepatic intrinsic clearance (CLint,h) was assessed for eight CES1 substrates using hepatocytes and LS9; extrahepatic hydrolysis was not considered due to high stability of these prodrugs in intestinal and kidney S9. On average, predicted oral CLint,h from hepatocyte data represented 20% of the observed value; the underprediction was pronounced for high-clearance prodrugs, consistent with the predictability of cytochrome P450/conjugation clearance from this system. Prediction bias was less apparent with LS9, in particular for high-clearance prodrugs, highlighting the application of this in vitro system for investigation of prodrugs.
منابع مشابه
Dmd057372 1522..1531
Hydrolysis plays an important role in metabolic activation of prodrugs. In the current study, species and in vitro system differences in hepatic and extrahepatic hydrolysis were investigated for 11 prodrugs. Ten prodrugs in the data set are predominantly hydrolyzed by carboxylesterases (CES), whereas olmesartan medoxomil is also metabolized by carboxymethylenebutenolidase (CMBL) and paraoxonase...
متن کاملDmd064436 1381..1391
CT7758, a carboxylate containing a4b1/a4/b7 integrin antagonist, was characterized for its pharmacokinetic profile in various in vitro and in vivo assays in support of clinical development. The oral bioavailability of CT7758 was 4% in mice, 2% in rats, 7–55% in dogs, and 0.2% in cynomolgus monkeys. The low bioavailability in rodents and monkey results from low intestinal absorption as evidenced...
متن کاملCross-Species Differences in the Preclinical Pharmacokinetics of CT7758, an α4β1/α4β7 Integrin Antagonist.
CT7758, a carboxylate containing α4β1/α4/β7 integrin antagonist, was characterized for its pharmacokinetic profile in various in vitro and in vivo assays in support of clinical development. The oral bioavailability of CT7758 was 4% in mice, 2% in rats, 7-55% in dogs, and 0.2% in cynomolgus monkeys. The low bioavailability in rodents and monkey results from low intestinal absorption as evidenced...
متن کاملPreparation of acrylic-type derivative of ibuprofen and in vitro evaluation studies of its polymeric prodrugs
Acrylic-type polymeric systems having degradable ester bonds linked to ibuprofen were synthesized and evaluated as materials for drug delivery. Ibuprofen, as a non-steroidal anti-inflammatory drug, was linked to 2-hydroxyethyl methacrylate by activated ester methodology in one-pot procedure. The resulting methacrylic derivative of ibuprofen was copolymerized with 2-hydroxyethyl methacrylate and...
متن کاملBILIARY EXCRETION AND BLOOD/PLASMA RATIO OF NOVEL 5-BROMO-6-ALKOXY-5,6-DIHYDRO PRODRUGS OF 5-ETHYL-2\'-DEOXYVRIDINE
The biliary excretion and blood/plasma ratios of four novel 5-bromo-6-alkoxy- 5,6-dihydro prodrugs to S-ethyl-2'-deoxyuridine (EDU) including (-)-trans-(5S, 6S)-S-bromo-S-ethyl-6-methoxy-S, 6-dihydro-2'-deoxyuridine (BMEDU), (+ )-trans( SR, 6R)-S-bromo-S-ethyl-6-ethoxy-S, 6-deoxyuridine (BEEDU), (+ )-trans-(SR, 6R)-5-bromo-5-ethyl-6-ethoxy -S, 6-dihydro-S '-O-valeryl-2 ':.deoxyuridine (VBE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2014